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Abstract

The analytic expression of the time evolution of the Reynolds stress

anisotropy tensor in all planar homogeneous ows is obtained by exact inte-

gration of the modeled di�erential Reynolds stress equations. The procedure

is based on results of tensor representation theory, is applicable for general

pressure-strain correlation tensors, and can account for any additional turbu-

lence anisotropy e�ects included in the closure. An explicit solution of the

resulting system of scalar ordinary di�erential equations is obtained for the

case of a linear pressure-strain correlation tensor. The properties of this so-

lution are discussed, and the dynamic behavior of the Reynolds stresses is

studied, including limit cycles and sensitivity to initial anisotropies.

I. INTRODUCTION

The dynamical behavior of the Reynolds stresses in homogeneous ows is modeled by a

tensor evolution equation. Previous studies have focused on the �xed points associated with

the equilibrium states of the Reynolds stresses for several homogeneous ows1{3 in order

to assess the stability of higher order models and the ability of these models to reach the

correct solution points. In recent studies, such �xed points have been obtained analytically

for all planar homogeneous ows in both inertial and noninertial frames as asymptotic states

of the evolution of the Reynolds stresses.4 In the present paper, the time evolution of the

Reynolds stress anisotropy tensor is obtained analytically for all planar homogeneous ows.

The resulting explicit expression for the Reynolds stress anisotropy tensor is quite compact

and can be expressed as ratios of sums of exponentials in time.

Such an analytical solution is obtained through a recasting of the tensor equation for

the Reynolds stress anisotropy into an equivalent set of three scalar ordinary di�erential

equations in three scalar invariants by using representation theory. This procedure can be

applied to the Reynolds stress model equations in which the pressure strain correlation ten-

sor is modeled in a general way, including quadratic or higher order terms, and additional

anisotropy e�ects can be incorporated. The solution of the resulting set of ordinary di�eren-

tial equations is obtained for the case of a linear pressure-strain correlation tensor, with no



additional anisotropy e�ects included. The present explicit nonequilibrium stress solution

predicts stress anisotropies that are quite close to the ones given by the modeled Reynolds

stress anisotropy evolution equation over all times. The di�erences can be attributed to

the assumption of a slow variation of the relative strain parameter that had to be made in

obtaining the explicit expression of the stress anisotropies. All the dynamic features of the

Reynolds stress evolution are captured by the explicit time solution, including limit cycles.

II. EVOLUTION OF REYNOLDS STRESS ANISOTROPY

Consider incompressible, homogeneous turbulent ow, where the velocity ui and the

kinematic pressure p are decomposed into the ensemble mean and uctuating parts:

ui = �ui + u0i; p = �p+ p0: (1)

In homogeneous conditions, the velocity gradients @�ui=@xj are independent of position.

These gradients are also assumed to be independent of the time. The Reynolds stress tensor

�ij � u0iu
0
j is a solution of the time evolution equation

_�ij = ��ik
@�uj

@xk
� �jk

@�ui

@xk
+ �ij � "ij � 2
m(emkj�ik + emki�jk); (2)

which is valid in an arbitrary noninertial reference frame that can undergo a rotation with

angular velocity 
m relative to an inertial frame. In (2), eijk is the permutation tensor and

�ij = p0

 
@u0i
@xj

+
@u0j

@xi

!
; "ij = 2�

 
@u0i
@xk

@u0j

@xk

!
; (3)

are the pressure-strain correlation and the dissipation rate tensors (where � is the kinematic

viscosity), respectively.

With the turbulent kinetic energy K � 1
2
u0iu

0
i, the scalar turbulent dissipation rate

" � 1
2
"ii, and the Reynolds stress anisotropy tensor

bij =
�ij

2K
� 1

3
�ij; (4)

the term �ij is modeled in the commonly used second-order closure models in the general

form2 as

�ij = �"
�
C0

1 + C1
1
P

"

�
bij + C2KSij + C3K

�
bikSkj + Sikbkj � 2

3
bmnSnm�ij

�
� C4K(bikWkj �Wikbkj) + C4K
m(bikemkj � emikbkj) (5)

+ C5"
�
bikbkj � 1

3
bmnbnm�ij

�
;

Above, the strain rate Sij and rotation rate Wij tensors are de�ned as

Sij =
1

2

 
@�ui

@xj
+
@�uj

@xi

!
; Wij =

1

2

 
@�ui

@xj
� @�uj

@xi

!
; (6)
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and P � ��ijSij = �2KbijSij is the turbulence production. The coe�cients C0
1 , C

1
1 , and

C2�C5 can, in general, be functions of the invariants formed on bij, Sij , and Wij . Equation

(5) can be shown to be the most general form for �ij . For example, the pressure-strain

model of Speziale, Sarkar and Gatski2 (SSG) gives the following coe�cients:

C0
1 = 3:4; C1

1 = 1:8; C2 = 0:36; C3 = 1:25; C4 = 0:4; C5 = 4:2: (7)

The substitution of (5) into (2) yields the following general evolution equation for the

Reynolds stress anisotropy tensor bij, written in matrix form and in nondimensionalized

variables

d

dt�
b = � 1

g�
b � a3

�
bS

� + S
�
b� 2

3
fbS�gI

�
+ a2(bW

� �W
�
b) (8)

+
1

�
a4

�
b
2 � 1

3
fb2gI

�
� a1S

� � L
�;

where

S
� = S=

q
fS2g; W� = ~W=

q
fS2g; L� = L=

q
fS2g; (9)

� = �
q
fS2g; � = �

q
�f ~W2g; t� = t

q
fS2g: (10)

The tensor ~Wij accounts for noninertial e�ects

~Wij = Wij � cw
memij; (11)

where cw = (C4 � 4)=(C4 � 2). The following de�nitions are used for the coe�cients:

1

g
=

�
1

2
C1

1 + 1

� P
"
+

1

2
C0

1 � 1; (12)

a1 =

�
4

3
� C2

�
=2; a2 = (2 �C4)=2; a3 = (2 �C3)=2; a4 = C5=2: (13)

The tensor L can generally contain the additional turbulence anisotropic e�ects, and the

scalar coe�cients ai may generally be functions of the invariants � and �. In the current

context, L is taken simply as d to represent the e�ects of the dissipation rate anisotropy,

with the dissipation rate anisotropy tensor de�ned as

dij =
"ij

2"
� 1

3
�ij: (14)

Equation (8) is equivalent to (2), but must be supplemented with an equation for the tur-

bulent kinetic energy K

_K = P � "; (15)

and for closure, an equation for the turbulent dissipation rate

_" = C"1
"

K
P � C"2

"2

K
; (16)

where C"1 and C"2 are closure constants.
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III. SOLUTION OF REYNOLDS STRESS EQUATION

A. Equivalent Scalar Representation

The tensor relation (8) governing the evolution of the stress anisotropy cannot be manip-

ulated further because it involves matrix products and their transpose. Even with lineariza-

tion (a4 = 0), the terms that factor b cannot all be grouped to allow for the integration of

the system of ordinary di�erential equations. The following technique, however, transforms

the tensor relation into an equivalent system of scalar ordinary di�erential equations, which

in turn can be solved.

With the evolution of the anisotropy tensor b governed by equation (8), the tensor b can

be assumed to be dependent only on the tensors S� and W�, as well as on scalar quantities

such as t�, �, and �. It can be shown5 in this case that for two-dimensional ows the exact

representation for the tensor b is given by

b = fbS�gS� + fbW�
S
�g

fW�2g (S�W� �W
�
S
�) + 6fbS�2g

�
S
�2 � 1

3
I

�
: (17)

Equation (17) thus shows that if the three scalar invariants fbS�g, fbW�
S
�g, and fbS�2g

can be determined independently of (17), then a knowledge of these scalar functions is

equivalent to knowing b. In addition, the representation (17) can be used to construct (see

Appendix A) the nonlinear term in (8),

b
2 � 1

3
fb2gI = 2fbS�gfbS�2gS� + 2

fbW�
S
�gfbS�2g

fW�2g (S�W� �W
�
S
�) (18)

+

 
fbS�g2 � 2

fbW�
S
�g2

fW�2g � 6fbS�2g2
!�
S
�2 � 1

3
I

�
;

which clearly shows the same tensor function representation as in (17), as well as a depen-

dency on the same three scalar invariants. Independent of the representations shown in (17)

and (18), equations for the three scalar invariants fbS�g, fbW�
S
�g, and fbS�2g can be

formed (see Appendix B) from the Reynolds stress anisotropy evolution equation given in

(8). For simplicity, the following variables are introduced

B1 = fbS�g; B2 = fbW�
S
�g; B3 = fbS�2g; (19)

and the representation in (17) is rewritten as

b = B1S
� � B2

R2
(S�W� �W

�
S
�) + 6B3

�
S
�2 � 1

3
I

�
; (20)

where

R2 =
�2

�2
= �fW

�2g
fS�2g :

The evolution equation (8) is, therefore, equivalent to the system of ordinary di�erential

scalar equations in the scalar invariants fbS�g, fbW�
S
�g, and fbS�2g that is obtained as

shown in Appendix B (equation (B5)),
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_B1 = (2�B1 �
�

�
)B1 + 2a2B2 � 2a3B3 +

2a4

�
B1B3 � a1 � L1;

_B2 = �a2R2B1 + (2�B1 �
�

�
)B2 +

2a4

�
B2B3 � L2;

_B3 = �1
3
a3B1 + (2�B1 �

�

�
)B3 +

a4

6�
B2

1 +
a4

3�R2
B2

2 �
a4

�
B2

3 � L3;

(21)

where the tensor L appears through the invariants

L1 = fL�S�g; L2 = fL�W�
S
�g; L3 = fL�S�2g: (22)

Equation (21) is a system of three algebraic ordinary di�erential equations in the three

unknowns B1, B2, and B3, which is quadratic even if a4 6= 0 because g depends on B1,

1

g
= �2��B1 + �; (23)

with � = C1
1=2+1 and � = C0

1=2�1. Note that the degenerate case of � = 0 is not considered

because either the absence of mean velocity gradients or the absence of a turbulence �eld

would be implied. Of course, no such restrictions apply to �, so the case of � = 0 is not

precluded.

The dynamic system (21) is subjected to the initial conditions

B1;0 = fb0S
�g; B2;0 = fb0W

�
S
�g; B3;0 = fb0S

�2g; (24)

where b0 is a given initial anisotropy.

B. Solution of Reynolds Stress Equation

The system of scalar ordinary di�erential equations (21) with the representation in

(20), which is equivalent to the original tensor evolution equation for the Reynolds stress

anisotropy (8), has a signi�cant advantage in that it is muchmore tractable and better suited

for analysis than the original tensor equation. Any expression for the extra anisotropy tensor

L can be provided which involves the stress anisotropy tensor to any degree of complexity.

It then su�ces to study the resulting dynamical system (21) to have a complete description

of the evolution of the Reynolds stress anisotropy tensor (8). In the case of pressure-strain

rate models that are only linear in the Reynolds stress anisotropy so that a4 = 0 (compare

(5) with C5 = 0) and for which no additional anisotropies are included L = 0, an explicit

solution of the system of ordinary di�erential equations (21) can be obtained. The solu-

tion procedure for the resulting di�erential system is not straightforward, and the major

steps of its derivation are given in Appendix C. The �nal expression for the Reynolds stress

anisotropy tensor, which is the solution of the modeled evolution equation (8) with a4 = 0

and L = 0, is rather compact and involves ratios of characteristic functions 	i:

5



B1(t
�) =

1

2�

"
�

�(t�)
� 	3(t

�)

	2(t�)

#
;

B2(t
�) =

a2R2

2�

"
1� �

�(t�)

	1(t
�)

	2(t�)
� 1

	2(t�)

#
+

1

	2(t�)
B2;0;

B3(t
�) =

a3

6�

"
1 � �

�(t�)

	1(t
�)

	2(t�)
� 1

	2(t�)

#
+

1

	2(t�)
B3;0:

(25)

The characteristic functions 	i are the fundamental solutions of a quadratic nonlinear system

of two ordinary di�erential equations (see Appendix C) and are related by 	2 = _	1 and

	3 = _	2,

	1(t
�) = K

hP3
r=1 �r

1
�r
e�rt

�

+ �(H +H0)
i
;

	2(t
�) = K

P3
r=1 �re

�rt
�

;

	3(t
�) = K

P3
r=1 �r�re

�rt
�

;

(26)

where

H =
2

3
a23 � 2a22R2; (27)

H0 = 4�(a2B2;0 � a3B3;0); (28)

�r = [�2r � 2��rB1;0 � (H +H0)](�p � �q); (29)

� = (�3 � �2)=�1 + (�1 � �3)=�2 + (�2 � �1)=�3; (30)

and K = [(�2��1)(�3��1)(�3��2)]�1. In (29), the indices p and q are such that erpq = �1.
Finally, the parameters �r are the eigenvalues that are obtained as roots of the following

third-order characteristic polynomial equation:

�3 � �

�
�2 � (H + 2�a1) �+

�

�
H = 0: (31)

In (25), the relative strain parameter depends on the time � = �(t�), and its evolution is

governed by an additional equation. However, in the derivation of the explicit solution of the

system of ordinary di�erential equations (21), the relative strain parameter � was assumed

not to vary in time, _� � 0. (See Appendix C.)

IV. ANALYSIS OF DYNAMICAL BEHAVIOR

A. Transient Behavior

Equations (20) and (25) completely determine the solution of the modeled evolution

equation for the Reynolds stress anisotropy tensor for all planar homogeneous turbulent

6



ows. Any initial stress anisotropy can be taken into account. The scalars Bi of the ex-

pansion in (20) involve ratios of the characteristic functions 	i, which are expressed as the

sum of three exponential functions. Because the arguments of the exponentials are the same

for all characteristic functions and are given as the roots of the characteristic polynomial

(31), the dynamical behavior of the stress anisotropies will essentially be determined by the

location of these roots in the complex plane. If �1 and �2 are de�ned as

�1 = �1

3

 
H + 2�a1 +

1

3

�2

�2

!
; �2 = �1

3

�

�

 
H � �a1 �

1

9

�2

�2

!
; (32)

then the discriminant of the third-degree polynomial equation (31) is given by

� = �3
1 +�2

2: (33)

The discriminant depends on the parameters H and � only and can be rewritten as

� = � 1

27

"
H
�4

�4
+ (�2a21 + 10�a1H � 2H2)

�2

�2
+ (H + 2�a1)

3

#
: (34)

Because H is a function of R (see equation (27)), the value of the discriminant will be

essentially determined by R and �. Figure 1 shows the evolution of the discriminant � as a

function of �, for di�erent values of the parameter R. Three cases must be distinguished:

0 5 10 15
η

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

∆

|R| = 1

|R| = 0

|R| = 0.125

|R| = R2 ~ 1.231

|R| = 1.5

|R| = 0.5

|R| = R1  ~  0.271

R
ea

l r
oo

ts
C

om
pl

ex
 r

oo
ts

FIG. 1. Evolution of discriminant of cubic root equation as function of � for di�erent values of

parameter R, as labeled.

(a) � < 0

The three roots of the characteristic polynomial are real, and the characteristic functions

	i are combinations of real exponentials. Because a property of the roots of a third-degree

polynomial is that �1 + �2 + �3 = �=� is always positive, at least one root is positive.
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(b) � > 0

Two roots are complex conjugates, for example, �2 = ��3 = d + i! and �1 = �. The

characteristic functions can then be expressed as

	1(t
�) = K 0

h
e�t

�

+ edt
�

(f11 cos!t
� + f12 sin!t

�) + f13
i
;

	2(t
�) = K 0

h
�e�t

�

+ edt
�

(f21 cos!t
� + f22 sin!t

�)
i
;

	3(t
�) = K 0

h
�2e�t

�

+ edt
�

(f31 cos!t
� + f32 sin!t

�)
i
;

(35)

where K 0 and fij are constants. Because a property of the roots of a third-degree polynomial

is that �(d2 + !2) = �H�=� and � + 2d = �=� always, � will be positive when H < 0.

When H > 0, � < 0 and, thus, 2d = �=� � � > 0. Therefore, in this case also, one root will

have a positive real part.

(c) � = 0

The roots are all real, and two of them are equal, for example, �2 = �3 = �. In this

case, �1 = 0, and the third root �1 has no e�ect on the characteristic functions. Because

2� + �1 = �=� > 0, at least one root will be positive.

In summary, at least one root will always have a positive real part; therefore, the charac-

teristic functions 	i will always grow exponentially. In the case of � > 0, the characteristic

functions grow with superimposed (damped) oscillations of period T = 2�=!. Three distinct

cases can be identi�ed on Figure 1. For mean ow �elds such that H > 0, that is,

jRj < R1;

with

R1 =
a3p
3a2

(e.g., jRj < 0:271 for the SSG pressure-strain correlation coe�cients), the discriminant �

is always negative, and the three roots will always be real. For values of H such that

�2�a1 < H < 0, that is,

R1 < jRj < R2;

(e.g., 0:271 < jRj < 1:231 for the SSG), where

R2 =
1

a2

s
1

3
a23 + �a1;

the roots will have a di�erent nature depending on the magnitude of �, and the evolution

of the stress anisotropy will contain an oscillatory component for su�ciently small values of

�. Finally, for values H < �2�a1, that is,

8



jRj > R2;

the discriminant � is always positive, and the evolution of the stress anisotropy components

will contain damped oscillations.

The case of a vanishing root is of particular interest. Because �1�2�3 = �H�=� is

always veri�ed, one of the roots is zero (e.g., �2) if either H = 0 or 1=� = 0. In the case

H = 0 (and, thus, R = R1), � < 0 always, and the nonzero roots are real and given by

�1;3 = �=(2�) �
q
[�=(2�)]2 + 2�a1. In the case 1=� = 0, � = �(H + 2�a1)

3=27. When

H > �2�a1 (i.e., R < R2), the roots are all real and are given by the same relations as

for the case H = 0. When H < �2�a1 (i.e., R > R2), � > 0, and the roots are purely

imaginary. The characteristic functions 	2 and 	3 have a purely oscillatory behavior; while

	1 is increasing as
R
	2. The period of the oscillation is T = 2�=!, with !2 = �(H+2�a1).

B. Asymptotic States

It has been shown in the previous section that the characteristic functions 	i are always

increasing, except when 1=� = 0. For 1=� 6= 0, when the e�ect of the initial conditions has

vanished, the exponential that corresponds to the root with the largest real part becomes

dominant, and the ratios of the characteristic functions converge to the values"
	3(t

�)

	2(t�)

#
1

= lim
t�!1

	3(t
�)

	2(t�)
= �1;

"
	1(t

�)

	2(t�)

#
1

= lim
t�!1

	1(t
�)

	2(t�)
=

1

�1
;

(36)

where

�1 = max
r=1;2;3

Re(�r):

The asymptotic values of the coe�cients Bi are given by

B1
1 =

1

2�
(
�

�1
� �1);

B1

2 =
a2R2

2�
(1� 1

�1

�

�1
);

B1

3 =
a3

6�
(1 � 1

�1

�

�1
);

(37)

where �1 is the equilibrium value achieved by the relative strain parameter. It can be shown

that for any planar homogeneous ow described by the Reynolds stress model equation (2),

a unique relationship holds between the equilibrium value for the production-to-dissipation

ratio (P
"
)1, the equilibrium relative strain parameter �1, and the rotation rate R:8>>>>>><

>>>>>>:

1

�21
= 2g1a1

�P
"

��1
1

+ g21H; for �Rlim < R < Rlim;

1

�2
1

= 0; otherwise

(38)
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where g1 = (�(P
"
)1 + �)�1 and

Rlim =
1

a2

s
1

3
a23 + �a1 + �a1

�P
"

��1
1

: (39)

The equilibrium value of the production-to-dissipation ratio (P
"
)1 is determined by the K

and � evolution equations. For the standard approach, where equations (15) and (16) are

used, this value is given by

�P
"

�
1

=
C"2 � 1

C"1 � 1
: (40)

For values of the parameter R outside the range [�Rlim;Rlim], the asymptotic value of the

relative strain parameter is 1=�1 = 0, and the representation coe�cients given by (37) are

B1

1 = ��1=(2�); B1

2 = a2R2=(2�); B1

3 = a3=(6�): (41)

However, as shown before, for values of 1=� = 0, the solution reaches a limit cycle for the

anisotropy, and no asymptotic state exists. The solution (41) is, therefore, spurious because

the real behavior of the anisotropy is purely oscillatory in time.

In a previous study,6 an expression equivalent to (37) was obtained from a direct analysis

of the asymptotic state of (8). Written in the present formalism, the asymptotic value for

the representation coe�cient B1

1 was obtained from the roots of a cubic polynomial in B1

1 ,

4�2(B1

1 )3 � 4�
�

�
(B1

1 )2 +

 
�2

�2
�H � 2�a1

!
B1

1 +
�

�
a1 = 0; (42)

which led to the problem of choosing one of the three roots so that the value of B1

1 was

retained. This question could not be rigorously answered, and the selection of the proper

root was done on the basis of continuity arguments.6 With the present dynamic approach of

the Reynolds stress equation, the proper choice for the roots in (42) is obvious and is based

on the limit of a dynamical process. Clearly, the correct root is the one that controls the

asymptotic behavior of the system (i.e., �1). In terms of B1

1 , B1

1 must be taken as the

root in (42) that has the lowest real part.

In general, planar homogeneous ows can be described by the expression7

@ �ui

@xj
=

1

2
[(D + !)�i1�j2 + (D � !)�i2�j1] ; (43)

which yields

�2 =
1

2
(D� )

2
; �2 =

1

2
[(! � 2c!
) � ]

2
; (44)

where D=2 is the strain rate and !=2 is the rotation rate of the ow. As shown in Table I, a

wide class of homogeneous ows, both with and without system rotation, can be described

in terms of R,

10



TABLE I. Characterization of Common Homogeneous Turbulent Flows.

Flow j!=Dj j
=Dj jRj H

Plane shear 1 0 1 �1:19

Plane strain 0 0 0 0.09

Hyperbolica < 1 0 < 1 > �1:19

Elliptica > 1 0 > 1 < �1:19

Rotating plane shear 1 0.25, 0.50 0.125, 1.25b 0 .07, �1:91

a
See Leuchter and Benoit

7
for a description of this class of ows.

b
These values are dependent on the pressure-strain rate model used (SSG model in this case).

R2 =

�
!

D
� 2c!




D

�2

: (45)

As discussed above, the value � = 0 divides the plane (R; �) into two regions in which

the Reynolds stress components have distinctly di�erent behaviors in time. These regions

are illustrated in Figure 2; the solid lines are determined by the locus of points (R; �) such
that � = 0. For realizability (� > 0), only the positive root of 1=� is plotted. Figure 2
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R

0.0

0.2

0.4

0.6

0.8

1.0

1/
η

REGION I REGION IIREGION II

Damped oscillations Exponential convergence Damped oscillations

R1
R2−R2

−R1

S
lo

w
er

 d
am

pi
ng

   
 F

as
te

r 
da

m
pi

ng

FIG. 2. Map of time-evolution types for Reynolds stress tensor in (R; 1=�) plane. Boundary

� = 0, ; locus of equilibrium points 1=�1 as function of R, ; plane shear, ; plane

strain, 3; rotating plane shear
���
D
��� = 0:25 and 0:50, 4 and 5, respectively.

also shows the locus of asymptotic solutions 1=�1 as a function of R, as de�ned by (38).

(Note the dashed line in Fig. 2.) The symbols correspond to several planar homogeneous

ows. (See Table I.) When the standard equation (16) for the dissipation rate " is used, the

evolution equation for the relative strain parameter �

11



d

dt�
� = 2�B1(C"1 � 1) + (C"2 � 1) (46)

is solved in conjunction with the evolution of the coe�cients Bi. Because for a given planar

homogeneous ow the value of the parameterR is �xed, the system will evolve along vertical

lines in Figure 2. For values of (R; �) situated in region I of Figure 2, the roots of the

characteristic polynomial are real, and the Reynolds stress components converge to the

asymptotic solution as ratios of real exponentials. In terms of dynamical systems, the

asymptotic solution is a sink. For example, planar strain ows and rotating shear ows with


=D = 0:25 will always have an evolution that is characterized by growing exponentials,

for any initial condition on the anisotropy b0 or on the relative strain parameter �0. Points

in region II have a time evolution with a damped oscillatory character, and the asymptotic

state is a spiral sink. The rate of damping of the oscillations is proportional to 1=�, with no

damping at all when 1=� = 0. For example, a shear ow with high rotation (
=D = 0:5)

is such that R > R2, and the stress components will evolve to their asymptotic value with

damped oscillations. Note that for the homogeneous shear case (R1 < R < R2), the two

types of evolution can be experienced depending on the value of �. As already mentioned,

for values R > Rlim, the asymptotic solution for the relative strain parameter is 1=�1 = 0,

and the solution is purely oscillatory, i.e., a limit cycle is reached.

V. ILLUSTRATIONS

First, consider a sheared ow (R = 1) in which the turbulent �eld is subjected to the

following initial conditions:

�0 = 3:38; b11;0 = b12;0 = b22;0 = 0:

Figure 3 shows the evolution in time of the stress anisotropies predicted by the di�erential

equation (8) and by the present explicit time solution. Clearly, the anisotropies given by

the present explicit solution are almost indistinguishable from those given by the di�erential

equation; the di�erence is attributed to the assumption that d�=dt� � 0, which is used

in deriving the explicit solution. (See Appendix C.) From the standpoint of a dynamical

system, it is more interesting to consider the evolution of the system variables � and bij in

the phase plane, as shown in Figure 4.

In the case of an initial anisotropy, for instance,

�0 = 3:38; b11;0 = �0:1; b12;0 = 0:2; b22;0 = 0:2;

the present explicit nonequilibrium solution leads to stress evolutions that are almost indis-

tinguishable from those obtained with the di�erential Reynolds stress equation, as shown in

Figure 5. Moreover, the explicit nonequilibrium solution is remarkably close to the di�eren-

tial stress equation over a wide range of initial values �0 for the relative strain parameter,

as illustrated in Figure 6, which shows the initial value of � varying from 1 to 100, with

isotropic initial conditions (bij;0 = 0).

For values of the parameter R outside the range [�Rlim;Rlim], the asymptotic value

for 1=� is shown to be 0 (see equation (38)), and the solution reaches a limit cycle for the

12
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FIG. 3. Time evolution of stress anisotropies for homogeneous shear case. Initial conditions are

�0 = 3:38; b11;0 = b12;0 = b22;0 = 0. Present nonequilibrium solution, ; di�erential Reynolds

stress equation, .
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FIG. 4. Phase plane evolution of stress anisotropies for homogeneous shear case. Initial con-

ditions are �0 = 3:38; b11;0 = b12;0 = b22;0 = 0. Present nonequilibrium solution, ; di�erential

Reynolds stress equation, ; asymptotic solution, �.

anisotropy. Figure 7 shows the time evolution of the stress anisotropy components in the

case of a rotation-dominated ow for which !=D = 2 (and, thus, R = 2), which is well

outside the range [�Rlim;Rlim]. The discriminant � is, therefore, always positive. (See

Figure 2.) The initial stress �eld is taken to be isotropic, and the initial value of the relative

strain parameter is arbitrarily set to a high value (�0 = 100) in order to show clearly the

characteristic oscillation of the dynamic system. From its initial bounded value, the relative

strain parameter � grows unboundedly (so that 1=� ! 0) with superimposed oscillations, as

illustrated in Figure 8.

In Figures 7 and 8, clearly the present nonequilibrium explicit solution is extremely

accurate in capturing the initial phase of the evolution of the anisotropy. The period of the

oscillations is also captured well by the present nonequilibrium solution. When 1=� = 0, the
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FIG. 5. Phase plane evolution of stress anisotropies for homogeneous shear case. Initial condi-

tions are �0 = 3:38; b11;0 = �0:1; b12;0 = 0:2; b22;0 = 0:2. Present nonequilibrium solution, ;

di�erential Reynolds stress equation, ; asymptotic solution, �.
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FIG. 6. Phase plane evolution of stress anisotropies for homogeneous shear case. Initial con-

ditions are b11;0 = b12;0 = b22;0 = 0, and di�erent values for �0 are used, as labeled. Present

nonequilibrium solution, ; di�erential Reynolds stress equation, ; asymptotic solution, �.

solution is purely oscillatory, as discussed before. Because � starts from a bounded value, the

oscillations start with a damping component, and their amplitude �rst decreases in time.

Although the frequency of the oscillations is captured well, the amplitude clearly is not

correctly represented by the present nonequilibrium solution for larger times. This �nding is

attributed to the hypothesis d�=dt� � 0 that is used in the solution procedure. As the initial

condition �0 takes lower values, the initial damping of the oscillations is stronger, so that as

the limit cycle is approached all oscillations may be nearly killed for the di�erential stress

evolution; whereas the oscillations for the present explicit solution have not been damped

fast enough, as illustrated in Figure 9, where the initial � value is set to a low value (�0 = 2).

As � grows in time, the oscillations of the nonequilibrium solution are not damped at the

correct rate, and the remaining long-term amplitude of the oscillations is not correct.
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FIG. 7. Time evolution of stress anisotropies for rotation-dominated ow (!=D = 2). The

initial conditions are �0 = 100; b11;0 = b12;0 = b22;0 = 0. Present nonequilibrium solution, ;

di�erential Reynolds stress equation, .
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FIG. 8. Phase plane evolution of stress anisotropies for rotation-dominated ow (!=D = 2).

Initial conditions are �0 = 100; b11;0 = b12;0 = b22;0 = 0. Present nonequilibrium solution, ;

di�erential Reynolds stress equation, .

VI. CONCLUSIONS

A general procedure has been developed that allows for the investigation of the time

evolution of the Reynolds stress anisotropy components in all planar homogeneous turbulent

ows. The procedure takes the evolution equation for the Reynolds stress anisotropy tensor

and replaces it with an equivalent system of scalar ordinary di�erential equations. This

equivalent system can then be used for assessing the dynamical behavior of a variety of

turbulence closure models. This includes pressure-strain rate models which are quadratic

(or higher) in the anisotropy tensor and in which other anisotropic e�ects, such as dissipation

rate anisotropy, can be taken into account. For the case of linear pressure-strain rate models,

the system of ordinary di�erential equations can be analytically integrated when the relative
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FIG. 9. Phase plane evolution of stress anisotropies for rotation-dominated ow (!=D = 2).

Initial conditions are �0 = 2; b11;0 = b12;0 = b22;0 = 0. Present nonequilibrium solution, ;

di�erential Reynolds stress equation, .

strain parameter is assumed to vary slowly, and an explicit expression can be found for the

time evolution of the anisotropy of the Reynolds stress tensor in all planar homogeneous ow.

The present nonequilibrium solution is extremely e�ective at capturing the initial behavior

of the modeled Reynolds stress evolution, as well as the equilibrium states. In most cases,

the present explicit nonequilibrium solution predicts stress anisotropies that are quite close

to those given by the modeled di�erential Reynolds stress anisotropy evolution equation

for all times; the small di�erences are attributed to the assumption of slow variation of

the relative strain parameter used in obtaining the explicit expression of the time evolution

of the modeled stress anisotropies. It has also been shown that the present nonequilibrium

solution is able to predict all the dynamic features of the Reynolds stress evolution, including

the oscillatory nature of the stress anisotropy for elliptic ows.
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APPENDIX A: REPRESENTATION OF b2 � 1
3fb

2
gI

Consider a symmetric, traceless tensor b for which the elements in any rectangular

coordinate system are functions of the elements of two independent traceless tensors S�

(symmetric) and W� (antisymmetric) in the same coordinate system, which is written as

bij = bij(S
�

kl;W
�

kl):

The forms of these functional relationships also must be independent of the particular co-

ordinate system in which they are expressed; that is, the relation between b, S�, and W� is

isotropic.8

For two-dimensional mean ows, S� has one vanishing eigenvalue, and in the principal

coordinate system of S�, the vorticity vector is aligned with the eigenvector of S� that

corresponds to the vanishing eigenvalue. If the tensor b� is also assumed to have one

eigenvector aligned with the eigenvector of S� that corresponds to the vanishing eigenvalue,

then the tensor b can be represented in terms of the tensors S� and W
� and the scalar

invariants fbS�g, fbW�
S
�g, and fbS�2g, as5

b = fbS�gS� + fbW�
S
�g

fW�2g (S�W� �W
�
S
�) + 6fbS�2g(S�2 � 1

3
I): (A1)

The quadratic term b
2� 1

3
fb2gI can also be represented in terms of the tensors S� and W�

and the scalar invariants fbS�g, fbW�
S
�g, and fbS�2g.

If in expression (A1) the symmetric, traceless tensor b is replaced by b2 � 1
3
fb2gI, then

the following equation is obtained:

b
2 � 1

3
fb2gI = fb2

S
�gS� + fb2

W
�
S
�g

fW�2g (S�W� �W
�
S
�) (A2)

+ 6(fb2
S
�2g � 1

3
fb2g)(S�2 � 1

3
I):

Now, the scalar invariants fb2
S
�g, fb2

W
�
S
�g, and fb2

S
�2g in (A2) must be expressed in

terms of the scalar invariants fbS�g, fbW�
S
�g, and fbS�2g.

For conciseness, relation (A1) can be rewritten as

b =
3X
i=1

aiTi; (A3)

where the scalar coe�cients ai are

a1 = fbS�g; a2 = fbW�
S
�g=fW�2g; a3 = 6fbS�2g;

and the tensors Ti are given by

T1 = S
�; T2 = S

�
W

� �W
�
S
�; T3 = S

�2 � 1

3
I:

Therefore,
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fb2
S
�g = fb2

T1g; fb2
W

�
S
�g = �1

2
fb2

T2g; fb2
S
�2g � 1

3
fb2g = fb2

T3g;

and if (A3) is inserted into the above expressions, then

fb2
Tig =

3X
j=1

3X
k=1

ajakfTjTkTig; (i = 1; 2; 3): (A4)

Finally, the 27 invariants fTjTkTig, (i; j; k = 1; 2; 3) must be evaluated. As a result of

symmetry properties ((j; k; i) = (i; j; k) = (k; i; j)), only 11 invariants must be computed:

(i; j; k) = (1; 1; 1), (1; 1; 2), (1; 1; 3), (1; 2; 2), (1; 2; 3), (1; 3; 2), (1; 3; 3), (2; 2; 2), (2; 2; 3),

(2; 3; 3), and (3; 3; 3). With the generalized version of the Cayley-Hamilton theorem,9 the

only resulting nonzero invariants are

fT2
1T3g =

1

6
; fT2

2T3g = �1

3
fW�2g; fT3

3g = � 1

36
;

together with the invariants that result from the cyclic permutations of the indices. There-

fore, the relations

fb2
S
�g = 1

3
a1a3 = 2fbS�gfbS�2g;

fb2
W

�
S
�g = 1

3
a2a3fW�2g = 2fbW�

S
�gfbS�2g; (A5)

fb2
S
�2g � 1

3
fb2g = 1

6
a21 �

1

3
a22fW�2g � 1

36
a23 =

1

6
fbS�g2 � 1

3

fbW�
S
�g2

fW�2g � fbS�2g2;

lead to the desired expression of the quadratic term in (18).
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APPENDIX B: DERIVATION OF fbS�g, fbW�S�g, AND fbS�2g EQUATIONS

Starting from the tensor evolution equation for the Reynolds stress anisotropy (8), a

system of three scalar ordinary di�erential equations in the three scalar unknowns fbS�g,
fbW�

S
�g, and fbS�2g can be derived.

By multiplying relation (8) by S�, taking the trace of the equation, and using the results

of Appendix A to express fb2
S
�g in terms of fbS�g and fbS�2g, the following equation is

obtained:

f db
dt�

S
�g = � 1

g�
fbS�g � 2a3fbS�2g+ 2a2fbW�

S
�g (B1)

+
2a4

�
fbS�gfbS�2g � a1 � fL�S�g:

Similarly, multiplying equation (8) by eitherW�
S
� or S�2 and taking the trace of the equa-

tion leads to the following equations, respectively:

f db
dt�

W
�
S
�g = � 1

g�
fbW�

S
�g � a2

�2

�2
fbS�g+ 2a4

�
fbW�

S
�gfbS�2g � fL�W�

S
�g; (B2)

and

f db
dt�

S
2�g = � 1

g�
fbS�2g � 1

3
a3fbS�g+

a4

6
fbS�g2 (B3)

+
a4

3�

�2

�2
fbW�

S
�g2 � a4

�
fbS�2g2 � fL�S2�g:

In obtaining these two equations, the following relations are used:

fbS�3g = 1

2
fbS�g; 2fbW�2

S
�g + fbW�

S
�
W

�g = �1

2

�2

�2
fbS�g;

which are consequences of the Cayley-Hamilton theorem.9 Because the velocity gradients

have been assumed independent of time, the following can easily be veri�ed:

f db
dt�

S
�g = d

dt�
fbS�g;

f db
dt�

W
�
S
�g = d

dt�
fbW�

S
�g; (B4)

f db
dt�

S
2�g = d

dt�
fbS�2g:

Equations (B1), (B2), and (B3) lead, therefore, to the desired system of scalar ordinary

di�erential equations for the invariants fbS�g, fbW�
S
�g, and fbS�2g,
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d

dt�
fbS�g = � 1

g�
fbS�g � 2a3fbS�2g+ 2a2fbW�

S
�g

�a1 � fL�S�g+
2a4

�
fbS�gfbS�2g;

d

dt�
fbW�

S
�g = � 1

g�
fbW�

S
�g � a2

�2

�2
fbS�g � fL�W�

S
�g (B5)

+
2a4

�
fbW�

S
�gfbS�2g;

d

dt�
fbS�2g = � 1

g�
fbS�2g � 1

3
a3fbS�g � fL�S�2g+

a4

6�
fbS�g2

+
a4

3�

�2

�2
fbW�

S
�g2 � a4

�
fbS�2g2:
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APPENDIX C: SOLUTION OF ANISOTROPY EVOLUTION EQUATION

The change of variables

B1 =  ; (C1)

B2 =
a3

a2
� � a2R2

H
�; (C2)

B3 = � � a3

3H
�; (C3)

transforms system (21) into the quadratic system of ordinary di�erential equations

_� =

 
2� � �

�

!
�; (C4)

_� =

 
2� � �

�

!
�+H ; (C5)

_ =

 
2� � �

�

!
 + �� a1; (C6)

where

H =
2

3
a23 � 2a22R2:

System (C4) { (C6) is subjected to the following initial conditions:

 0 =  (0) = B1;0;

�0 = �(0) = 2a2B2;0 � 2a3B3;0;

�0 = �(0) =
�
2
3
a2a3B2;0 � 2a22R2B3;0

�
=H:

(C7)

In this system, the evolution of the two variables  and � is independent of the evolution

of the variable �. Therefore, the quadratic system of ordinary di�erential equations

_� = ��
�
�+H + 2� �; (C8)

_ = ��
�
 + �+ 2� 2 � a1; (C9)

can be solved, and the evolution of � is deduced by integrating (C4),

�(t�) = �0 exp
Z t�

0

"
2� (s)� �

�(s)

#
ds: (C10)

By integrating (C8), the evolution of � can be given as a function of  ,

�(t�) = He
R

t
�

0
[2� (s)��=�(s)]ds

Z t�

0
 (r)e�

R
r

0
[2� (s)��=�(s)]dsdr + �0e

R
t
�

0
[2� (s)��=�(s)]ds: (C11)
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By introducing the transformation

 (t�) = � 1

2�

 
_!(t�)

!(t�)
� �

�(t�)

!
; (C12)

equation (C11) can now be rewritten as

�(t�) = �H

2�
+

1

2�!(t�)

"
!(0)(H + 2��0) + �H

Z t�

0

!(s)

�(s)
ds

#
; (C13)

and equation (C9) can be written in terms of ! as the following integro-di�erential equation:

�! = �
_!

�
+ (H + 2�a1 � �

_�

�2
)! � �H

Z t�

0

!(s)

�(s)
ds � !(0)(H + 2��0); (C14)

where !(0) can take any nonzero value and _!(0) = �!(0)(2� 0 � �=�0) = �!(0)(2�B1;0 �
�=�0), with �0 = �(0) as the initial value of the relative strain parameter. Equation (C14)

is integrated with the following transformation

	1 =
Z
!=�;

	2 = _	1 = !=�;

	3 = _	2 = _!=� + ! _(1=�);

	4 = _	3 = �!=� + 2 _! _(1=�) + ! �(1=�):

The functions 	i are the solution of

_	1 = 	2;
_	2 = 	3;

_	3 = ��
�
H	1 +

 
H + 2�a1 �

��

�

!
	2 +

1

�
(� � 2 _�)	3 �

�0

�
	2(0)(H +H0);

(C15)

where the initial conditions are given by 	1(0) = 0, 	2(0) 6= 0, and 	3(0) = �	2(0)(2�B1;0�
�=�0 � _�0=�0); and H

0 = 2��0 = 4�(a2B2;0 � a3B3;0).

In the general case for which the relative strain parameter varies in time, system (C15)

is a linear system of ordinary di�erential equations with variable coe�cients. In the case of

slow variations of �, the approximations

_�

�
� 0;

��

�
� 0 (C16)

are valid, and the solution of the system of ordinary di�erential equations (C15) yields

	1(t
�) = K[

3X
r=1

�r
1

�r
e�rt

�

+ �(H +H0)];

	2(t
�) = K

3X
r=1

�re
�rt�; (C17)

	3(t
�) = K

3X
r=1

�r�re
�rt

�

;
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where K = 	2(0)[(�2 � �1)(�3 � �1)(�3 � �2)]
�1 and

�r =
h
�2r � 2�B1;0�r � (H +H0)

i
(�p � �q); (C18)

� =
�3 � �2

�1
+
�1 � �3

�2
+
�2 � �1

�3
: (C19)

In (C18), the indices p and q are chosen such that erpq = �1. The �r are eigenvalues that
are obtained as roots of the following third-order characteristic polynomial:

�3 � �

�
�2 � (H + 2�a1)�+

�

�
H = 0: (C20)

Finally, in terms of the original variables Bi(t
�) the explicit solution is

B1(t
�) =

1

2�

"
�

�(t�)
� 	3(t

�)

	2(t�)

#
;

B2(t
�) =

a2R2

2�

"
1 � �

�(t�)

	1(t
�)

	2(t�)
� 	2(0)

	2(t�)

#
+

	2(0)

	2(t�)
B2;0;

B3(t
�) =

a3

6�

"
1� �

�(t�)

	1(t
�)

	2(t�)
� 	2(0)

	2(t�)

#
+

	2(0)

	2(t�)
B3;0:

(C21)

In (C21), the initial condition 	2(0) 6= 0 is arbitrary, and its value can, therefore, be taken

as 	2(0) = 1.
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